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ABSTRACT. In this paper, we are presented a formula for the polynomial

of a graph. Our main result is the following formula:

k
Soodk =Y a SP().
j=1

uweV(QG)
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1. INTRODUCTION

The graphs in this paper are connected and simple. Denote the vertex and edge

sets of graph G by V(G) and E(G), respectively. For a simple graph G(p,q), we

*Corresponding Author

Received 20 January 2009; Accepted 20 April 2009

(©2008 Academic Center for Education, Culture and Research TMU
55


hossein-zadeh
Typewriter
DOI: 10.7508/ijmsi.2008.02.006


56 S. Sedghi, N. Shobe and M. A. Salahshoor

define the degree sequence of G as
S . dl,dg,'-' ,dp

where d; = degv;, 1 < i < p, and v;’s are vertices of G. Suppose qg is number of
vertices of degree 0, a1 the number of vertices of degree 1, ..., and aa(g) is number
of number vertices of degree A(G), where A(G) = max{d;}. The polynomial of G

is defined as:

Definition 1.1. If S : dy,ds, - ,d, is a degree sequence of graph G. Then the
polynomial of graph G is

©
Sa(x) = Z a;z’
=0

Also a polynomial p(x) is said to be graphical if there exists a graph G such that
p(z) = Sa(x).

Example 1.2. Suppose G is defined by the following diagram:

NN

Then the degree sequence of G is S : 0,1,1,2,3,3 and A(G) = 3. Thus the

polynomial of G is
3
Sa(r) = Z a;x’
j=0
where ag = 1,a1 = 2,a2 = 1 and a3z = 2. Hence we have

Sq(x) = 12° 4 22 + 122 + 223 = 1 4 22 + 2 4 223,

Remark 1.3. It is easy to see that

A(G)

Sa(x) = Z ajx! = Z zdu
j=0

ueV(G)

where d,, is the degree of u.

Corollary 1.4. If G(p,q) is a graph with p vertices and q edges, then we have:
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A(G)
(1) Se(1) =p (2) > jaj=2q (3) Se(1)=2q¢= > du
7=0

Suppose P,,C),, K,, denoted the path, cycle and complete graphs with exactly
n vertices, respectively. Also a general k-regular graph is denoted by Gj. Then,
Sp, (1) =22 + (n — 2)a? Sc, (z) = na?
Sk, (r) =nz" ! Sg, () =p 2*
Definition 1.5. Let G; and G2 be two graphs. If V(G1) N V(G2) = ¢. Then
(1) G1 UGs is a graph that V(G1 UG2) = V(G1) UV (G2) and E(G1UG3) =
E(G1) U E(Gs)
(2) G1xGyisagraphthat V(G xG2) = V(G1)xV(Gz) and {(u,v), (v/,v")} €
E(Gy1 x G2) if and only if v = v’ and {v,v'} € E(G2) or v = v’ and
{u,v'} € E(Gy)
(3) G1+ Gy is a graph that V(G1 + G2) = V(G1) UV (G2) and E(G1+ G3) =
E(Gh) UE(G2) U {{u,v} |u e V(Gy),v € V(G2)}

Example 1.6. Suppose G; and G are two graphs such that their diagrams are as

a
0
b
1
G1
¢ q,

then the diagram graph G; X G2 and G + G2 as follows:

0
08 o 00
b
(1) 1 c

G1><G2 G1+G2

follows:
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Theorem 1.7. If G1(p1,q1) and Ga(p2,q2) are two graphs, then the polynomial of
graphs G1 U Ga, G1 X Gy and Gy + G2 are given by
(1) SG1UG2 (‘T) = SGI (‘T) + SG2 (I)
(2) SGIX02($) = SGl (‘T) : SGz(‘T)
(3) SG1+G2 (I) = xP? SGI (I) + P SG2 (‘T)
Proof.

(1) Sciua, () = Z 2% = Z % 4 Z 2l

uGV(GlUG2) MGV(Gl) UGV(G2)
= SGl (‘T) + SGQ (JJ)

(2) Saixa.(x) = Z zd = Z e

ueV(G1xG2) u=(u1,u2)EV(G1xG2)

= Z Z pur Tduy — Z Z puy pduy
u1 €V (G1) u2€V(G2) u1 €V(G1) u2€V(G2)

= Z zdu Z xu2
u1 €V (G1) us €V (Ga2)

= SGl (‘T) : SGQ(J")

(3) SG1+G2 (I) = Z xh = Z gdutpz + Z gdutP
u€V(G1+Gz) ueV(G1) ueV(G2)
— $p2 Z xdu + xpl Z :L.du
u€V(G1) u€V(Ga)

= aP28q, (x) + 2P Sg, (x)

Corollary 1.8. If Sg, (z) and Sq,(z) are graphical then

(1) Sg, () - Sa,(x) is graphical and conversely.
(2) aP2Sq,(z) + 2P Sq, (x) is graphical and conversely.

(3) Z dy =2 (p1 g2 +p2 ¢1)
u€V (G1xG2)

@ > du=2(pip2tatae)
ueV(G1+G2)

Example 1.9. The polynomial Sg(z) = 422 + 423 + 2 is graphical, because

Sq(x) = 4a® + 423 + 2* = (20 + 2%)?
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On the other hand, we have the following graph for the polynomial Sg, (z) = 2x+a2.

Hence the polynomial S¢(z) is graphical, because Sg(x) = S¢, (z) x Sg, (z). Also

its graph is as follows:

0 a (0,a) (0,0) (0,¢)

1 b (1, a) /1’ b) <1,C)

2 ‘ (2a) @B (20
Gl Gl Gl X Gl

Example 1.10. The polynomial Sg(z) = 32* + 223 is graphical, because
Sq(z) = 32% 4 223 = 22* + 2 + 22 = 23(22) + 2% (2 + 22)

On the other hand, we have the following graphs for the polynomials Sg, (z) = 2z

and Sg,(z) = 22 + 2w, respectively:

G1 Gy

Hence the polynomial Sg(z) is graphical, because Sg(x) = aP2S¢, (z) + 2P Sa, ().
Also its graph is as following;:

G+ Gy
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Definition 1.11. Let G be a graph. The polynomial Hg(z) is defined as follows:

Hg(x) = Z 2 utdo

{u,v}€E(G)

Example 1.12. The polynomial Hg(z) = 23 + 2® = 223 is the graph polynomial
of the following graph:

Corollary 1.13. Let G(p,q) is a graph with p vertices and q edges. Then we have:

HG(l) =q H&(l) = Z dy +d, = Z du2
{u,v}€E(G) ueV(Q)

Hp (v) =22+ (n—3)z* Hc, (z) = nat

Hg,(2) = "= Hg, (v) = g2

Theorem 1.14. Let G1(p1,q1) and Ga(p2,q2) be two graphs. Then

(1) Hg,ua, (:E) = Hg, (:E) + Hg, (I)
(2) HG1><G2(x) = Hg, (:E) : SG2(I2> + HG2(I) - Say (I2)
(3) Hg, ya, (‘T) = ‘T2p2HG1 (JJ) + $2P1HG2 (JJ) + wp1+pZSG1 (JJ) : SGQ (JJ)

Proof. (1) is trivial. To prove (2), we have:

Heg xa,(z) = Z glutde

{u,U}EE(G1 XGz)

_ Z Z 22y oy +duy

u1=v1 {uz,v2 }€E(G2)

+ ¥ $ gt 2y

{ul,vl}EE(Gl) uU2=v2

D S W

{us,v2}EE(G2) u1 €V (G1)
R
{u1,v1}€E(G1) us €V (G2)

= Hag,(7)Sc, (%) + He, (v)Sa, (2%)
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HG1+02 (JJ) = Z xdu—i_dv
{u,v}GE(GlJer)

— E glutdot2pe E pdutdot2p1

{u,v}eE(G1) {u,v}€E(G2)
+ Z xdquderPl +p2

ueV(G1),veV(Gz)

—  p2p2 E glutde 4 2P E pdutdo

{u,v}eFE(Gy) {u,v}€FE(G2)

4P +p2 E :Edu § xdv

weV(G1) vEV(G2)
= 2" Hg,(z) + 2*" Ha, (z) + 2”172 S¢, (1) Sq, (x)

Example 1.15. Counsider the following diagrams for graphs G; and Goa:

a
0
b
1 2
c
Gl G2
then, we have:
Hg, (z) = 223 Sa, (z) = 2z + 2?
Hg,(x) = 32" Sa,(z) = 322
Thus:
Horoa(@) = o5(20%) +25(30t) + 2520 + 2%)(32%)

= 22° 4+ 32'° + 62° + 321 = 82% 4 621°

Hence the diagram G + G is:

61
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5

Corollary 1.16.

Yoo dl=p > dP+p Y 4+ 8

UEV (G1xG2) ueV(Gy) uEV(Ga)
Proof. We know that
Hea xa, (‘T) = Hg, (‘T)Scz (1‘2) + Hg, (x)SGl (‘T2)
Hence,
+Hg, (2)Sc, (¢%) + 2xHe, (2)Sg, (2%)
Therefore
Hg,wa,(1) = Hg,(1)Sa,(1) +2He, (1)Sg, (1)
+Hg, (1)Sc, (1) + 2He, (1)5¢, (1)
On the other hand, we know that Hg(1) = ¢, H;(1) = Z dy?, Sg(1) = p and
ueV(QG)

S¢(1) = 2¢. Thus

Yoood? = pp Y, dl gty Y, 4 +4qg

ueV(G2xG1) uweV (G1) ueV (Ga2)
= P2 Z dy® + P1 Z d,* + 84142
ueV(G1) ueV(Gz)

O

Definition 1.17. Let G be a graph. The polynomial Fg(z) is defined as follows:
Fo(x) = Z dyzd
ueV(G)

Example 1.18. The polynomial of the graph GG defined by the following graph is
Hg(z) = 22 + 222
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b
a e C
d
Corollary 1.19. We have:
Fo(1) = S6(1) Fg(1) = Hg(1)
Fp,(z) = 22+ 2(n — 2)2? Fe, (x) = 2na?
Fg, (r) = n(n — 1)z 1 Fg, (z) = kp oF

Theorem 1.20. Let G1(p1,q1) and Ga(p2, q2) be two graphs. Then

(1) FGlUcz(‘r) = FGl(‘T) +FG2(x)
(2) Fe, xa, (:E) = Fg, (:E) - Sa, (:E) + Fa, (I) - Say (I)
(3) Feta, (I) =aPFg, (:E) + paaP? Scy (I) +aP Fa, (I) + p1zPt Sa, (I)

Proof. (1) is trivial. Prove (2), we have:

Fa,xa,(z) = Z dyzt
UGV(Gl XG2)

= Z (du, + duz)xdul Feuy
(u1,u2) €V (G1)xV(G2)

- Z Z (duy + duy )atea e

ulev(Gl)ugev(Gg)

TP ST ST S
uzGV(G2) U1€V(G1 u1€V(G1) ’U.2€V(G2)

= FGl(‘T)'SGQ(‘T)+FG2(x)'SG1(‘T)

FG1+G2 (‘T) = Z duxdu
weV(G1+G2)

_ Z (du+p2)xd“+p2+ Z (du+p1)$d“+pl

ueV (G1) ueV (G2)

= gP? Z dyz® + poaP? Z zdu

u€V(G1) ueV(G1)
+aPt Z dyxd 4 praP Z zd
ueV(G2) ueV(Ga)
= ‘TPQFGI (‘T) + p2xp2‘S’G1 (‘T) + 2P FG2 (JJ) + plxpl SGQ (JJ)
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Definition 1.21. Let G be a graph. The polynomial W¢(z) is defined as following;:

Wea(x) = Z (dy + dy)zdetdo
{u,v}€E(G)

Example 1.22. Consider the following diagram for the graph G. Then Wg(x) =
323 + 323 = 623,

b
a e c
d
Corollary 1.23. We have:
Wel)= > ditdo= Y d° We (1) = Hy(1)
{u,v}€E(G) ueV(G)

Wp, (x) = 62% + 4(n — 3)2* We, (z) = dnx?
Wk, (z) = n(n — 1)22?n—2 We, (z) = 2kqz?

Theorem 1.24. Let G1(p1,q1) and Ga(p2,q2) be two graphs. Then

(1) We,ug, (@) = We, (2) + Wa, (2)

(2) Wa,xa,(®) = 2Fg,(2%).Hg,(v) + Sq, (2?).Wa, (x) + 2Fg,(2?).Hg, (z) +
Sa, (2%).Wg, (z)

(3) Wa,16,(7) = 22P2We, (2)+2p22?P2 Hg, () +22Pr Wa, (2)+2p12°Pr Hg, () +

2P P2 Fg v, () + (P14 p2)2P P2 Sa, xa, (1)



Proof. (1) is trivial. To prove (2), we consider the following equation:

WGI x G2 (‘T)

WG1+G2 (‘T) =
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- Z (du + dv)xdu+dv
{u,v}GE(Gl ><G2)

= Y 3 2y duy o+ dyy )2 et

u1=v1 {uz,v2 }€FE(G2)

+ 30 Y (2duy + duy o+ dyy 2Pt
U2=v2 {ul,vl}GE(Gl)

= 2 Z du1 ($2)du1 Z zduz vy

u1 €V (G1) {uz,v2}€E(G2)

2 @) Y (et dp)ate
w1 €V (G1) {uz,v2}€E(G2)

203 du)te 3D et
u2€V(Ga) {u1,v1}€E(G1)

2 @ Y (dutdy)at
u2€V(Gz) {u1,v1}€E(G1)

= 2Fg, (‘Tz)'HGQ (JJ) + SGl (‘Tz)'Wcz (JJ)

+2FG2 (I2)'HG1 (I) + SG2 (I2)'WG1 (‘T)

Z (dy + dv)xdu"l'du

{u,v}GE(GlJer)

> (du+ dy + 2pg)ate et
{u,v}eE(G1)

D (du dy 2yt

{u,v}EE(G2)

+ Z (du + dy + p1 +p2)xdu+du+p1+p2
ueV(G1),veV(Ga)

2Pz Z (du + dv)xdu+dv + 2p2$2p2 Z putdy

{u,v}eFE(G1) {u,v}eE(G1)

65

+a?n Z (dy + dv)xd“”” + 2pr P Z gutdv

{u,v}€E(G2) {u,v}€E(G2)
_|_IP1+P2 Z (du +dv)$du+dv
ueV(G1),veV(G2)
+(p1 + pa)aPr P2 Z gdutdv

ueV(G1),veV(G2)

%P2 We, () + Y Hg, (x) + e We, (x) + 2p13:2p1HG2 (z)

+2P P2 Fo w6, (@) 4 (1 + p2)2? T2 Sa, xa, (2)
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In the end of this paper, we define a new triangle A as follows:

1
1 1
1 3 1
A= 1 7 6 1
1 15 25 10 1
1 31 90 65 15 1

that entry a;; of triangle A is:
1 j=1or j=1
aij = ) ) )
ag-n@G-y +tJae-n;  1<j<i
Theorem 1.25. If G is a graph with the polynomial Sg(x), then

k
S odt = ay s
j=1

ueV(G)

where k € N and ap; € A.

Example 1.26. Let G is a graph, such that its diagram is as following:

Hence the degree sequence and the polynomial Sg(z) are "1, 1, 2”7 and 2z + 22,

respectively. Thus for £k = 3 we have:

Z d>=13+1>+23=10
ueV(G)

On the other hand, we have Si;(1) = 4, S{(1) = 2, S’g’)(l) =0,a31=1,a3=3

and a3z = 1. Therefore

3
D ag; SL(1)=1x4+3x2+1x0=10
j=1
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Proof of Theorem 1.25. According to remark (1.3) Sq(z) = X ,cv(q) xu.,
Hence,
(1.1) Si(z) = Z dyxde—!
ueV(QG)
therefore

Se()= Y du

ueV(QG)
On the other hand, according to table of A for k =1, we have:

1
S ay SP(1) = anS5(1) = S5(1)
j=1

From above relations, we obtain that the theorem (1.25) for k¥ = 1 is true. Now

from the relation (1.1), we have x5¢(z) = X ,cv(q) d,x then

ueV
(1.2) Se(@) +Sg(x) = > du® e
ueV(Q)
therefore

Se()+S51) = Y d’
ueV(G)

On the other hand, according to table of A for k = 2, we have:
2 .
> a2 (1) = a21S5(1) + a2 SE(1) = Sp(1) + SE(1)
j=1

From two relations before, we obtain that the theorem (1.25) for k = 2 is true. Sim-
ilarly from the relation (1.2), we can prove the theorem (1.25) for k = 3. Therefore,

if we continue the above process, then the proof is completed.
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